
Creative Software Design

13 – Exception Handling

Yoonsang Lee

Fall 2023

Final Exam

• Date & time: Dec 19, AM 09:30 ~ 10:30

• Place: IT.BT 609

• Scope: Lecture 8 ~ 13

• You cannot leave until 30 minutes after the start of the exam even if you finish
the exam earlier.

• That means, you cannot enter the room after 30 minutes from the start of the
exam (do not be late, never too late!).

• Please bring your student ID card to the exam.

• We will not accept questions unless the error in the problem is clearly evident. You
should solve the problem based on the information provided in the question.

• Problem types: true/false, single choice, multiple choices, short answer, fill-in-blank,
...

Outline

• What are Exceptions & How to deal with Exceptions?

• C++ Exceptions: Basics

– try, catch, and throw

• More about C++ Exceptions

– Matching Catch Handlers

– Uncaught Exceptions

– Unwinding the stack

– ...

• Course Wrap-up

Exceptions

• Exceptions are anomalous or exceptional situations

requiring special processing – often changing the normal

flow of program execution[wikipedia]

– Memory allocation error

• out of memory space

– Divide by zero

•

– File IO error

• Try to open an unavailable file

double x = 2.;

double y = -2.;

double harmonic_mean = 2.0*(x*y)/(x+y);

How to Deal with Exceptions?

• Ignore them

– Wrong thing to do for all but demo programs

• Abort processing

– Detect exceptions but do nothing other than aborting the program

–

– A little bit better, but still wrong for all but demo programs

double harmonic_mean(double a, double b){

if (a == -b)

{

std::cout << “wrong arguments\n";

std::abort();

}

return 2.0 * a * b / (a + b);

}

$./harmonic_mean

wrong arguments

Aborted (core dumped)

How to Deal with Exceptions?

• Returning error values

–

– Difficult to read, modify, maintain and debug

• Easy to miss a check

– Impacts performance

• Constantly spending CPU cycles looking for rare "exceptional" events

– Traditional approach

• e.g. malloc(), fopen() of C

bool harmonic_mean(double a, double b,

double * ans){

if (a == -b){

*ans = DBL_MAX;

return false;

}

else{

*ans = 2.0 * a * b / (a + b);

return true;

}

}

ret = performTask()

if ret is 0(or some error codes)

perform error processing

ret2 = performTask2()

if ret2 is 0(or some error codes)

perform error processing

How to Deal with Exceptions?

• Use C++ Exceptions

–

– More maintainable

– More efficient: zero-cost model (popular strategy for major compilers):

• If no exceptions are thrown, there’s NO overhead.

• If exceptions are thrown, there’s more overhead to process them.

– Modern approach

• e.g. new, ifstream::open() of C++

try {

// protected code

} catch(ExceptionName e1) {

// catch block

}

C++ Exceptions: Basic

#include <iostream>

using namespace std;

double divide(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = divide(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

C++ Exceptions: Basic

#include <iostream>

using namespace std;

double divide(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = divide(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

• For a normal case (e.g. y

!= 0),

1. All code in the try block

is executed.

2. Catch block is skipped.

3. Program execution

resumes after the last

catch block.

C++ Exceptions: Basic

#include <iostream>

using namespace std;

double divide(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = divide(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

• For an exceptional case
(e.g. y==0),

1. "Throw" an exception.

2. Remaining code in the try

block is skipped.

3. Based on the type of the

exception, the matching

catch block is executed, if

found.

4. Program execution

resumes after the last

catch block.

C++ Exceptions: Basic

void someFunc1(){

…

throw SomeException(); // when an exception occurs

…

}

void someFunc2() {

try {

// some code that may throw an exception

someFunc1();

}

catch(SomeException &e) {

// some processing to attempt to recover from error

}

}

try, catch, and throw

#include <iostream>

using namespace std;

double divide(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = divide(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

• try {…}:

– Consists of codes that may

“throw” exceptions

– Groups one or more

statements (that may

throw exceptions) with

one or more catch blocks

try, catch, and throw

#include <iostream>

using namespace std;

double divide(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = divide(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

• catch(E e) {…}:

– Catchs the exception of

the given type, thrown

from a throw statement

inside try block

– Exception type can be any

built-in type or user-

defined class

– Exceptions are handled

inside the catch block

try, catch, and throw

#include <iostream>

using namespace std;

double divide(int a, int b) {

if(b == 0) {

throw "Division by zero condition!";

}

return (a/b);

}

int main () {

int x, y;

double z;

cin >> x >> y;

try {

z = divide(x, y);

cout << z << endl;

}

catch (const char* msg) {

cerr << msg << endl;

}

return 0;

}

• throw e:

– “Throw” an exception

– Exception type can be any

built-in type or user-

defined class

– Program immediately

jumps to the matching

catch block

Quiz 1

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2022123456: 4)

• Note that your quiz answer must be submitted in the above

format to receive a quiz score!

https://www.slido.com/

Matching Catch Handlers

• A catch handler matches an exception based on its type.

• A try block can be followed by multiple catch blocks.

– Matching attempts are performed in the order of catch handler de

claration.

try {
// some code that may throw an exception

}
catch(T1 t1) {

// processing for type T1
}
catch(T2 t2) {

// processing for type T2
}

#include <iostream>

#include <string>

using namespace std;

double divide(int a, int b) {

if(b == 0) {

throw -1; // "catch int"

//throw "exception"; // "catch const char*"

//throw string("exception"); // "catch const string&"

}

return (a/b);

}

int main () {

int x=2, y=0;

double z;

try {

z = divide(x, y);

cout << z << endl;

}

catch (int e) {

cout << "catch int " << e << endl;

}

catch (const char* e) {

cout << "catch const char* " << e << endl;

}

catch (const string& e) {

cout << "catch const string& " << e << endl;

}

return 0;

}

Matching Catch Handlers

• The conventional way to throw and catch exceptions is:

– throw an exception object

– catch it by const reference

• to avoid copying the object & modifying it in catch handler

• Polymorphism can be employed: A derived class object ca

n be caught by base class reference.

– But the opposite does not work.

– Caution: If a derived class object is passed by value of base class ty

pe, object slicing occurs.

Matching Catch Handlers

• std::exception : Base class for standard exceptions.

– All exceptions thrown by C++ standard library are derived from this

class.

– Therefore, all standard exceptions can be caught by catching this ty

pe by reference (catch(std::exception& e)).

#include <iostream>

using namespace std;

class ExceptionA: public std::exception { };

class ExceptionB: public ExceptionA { };

double divide(int a, int b) {

if(b == 0) {

throw ExceptionA(); // "catch ExceptionA&"

//throw ExceptionB(); // "catch ExceptionA&"

//throw std::exception(); // "catch std::exception&"

}

return (a/b);

}

int main () {

int x=2, y=0;

double z;

try {

z = divide(x, y);

cout << z << endl;

}

catch (ExceptionA& e) {

cout << "catch ExceptionA&" << endl;

}

catch (std::exception& e) {

cout << "catch std::exception&" << endl;

}

return 0;

}

Quiz 2

• Go to https://www.slido.com/

• Join #csd-ys

• Click "Polls"

• Submit your answer in the following format:

– Student ID: Your answer

– e.g. 2022123456: 4)

• Note that your quiz answer must be submitted in the above

format to receive a quiz score!

https://www.slido.com/

class ExceptionA: public std::exception {

…

};

class ExceptionB : public ExceptionA {

…

};

int main() {

try {

// This may throw

// ...

} catch (ExceptionB& e) {

// ...

} catch (ExceptionA& e) {

// ...

} catch (std::exception& e) {

// ...

}

return 0;

}

To catch each exception types in a hierarchy:

• Most-derived type should be caught first

• Most-base type should be caught last

Nested Try Blocks

• Try blocks can be nested.

• If a throw occurs in an inner try block, the exception moves

outward through the nested try blocks until the first

matching catch block is found.

– If one of the inner catch blocks catches the exception, it will not get

caught by the outer catch blocks.

– else, it will try to find a matching one in the outer catch blocks.

#include <iostream>

using namespace std;

class ExceptionA: public std::exception { };

class ExceptionB: public ExceptionA { };

double divide(int a, int b) {

if(b == 0) {

throw ExceptionA(); // "catch std::exception&"

//throw ExceptionB(); // "catch ExceptionB&"

}

return (a/b);

}

int main () {

int x=2, y=0;

double z;

try {

try{

z = divide(x, y);

}

catch (ExceptionB& e) {

cout << "catch ExceptionB&" << endl;

}

cout << z << endl;

}

catch (std::exception& e) {

cout << "catch std::exception&" << endl;

}

return 0;

}

Re-throw Exceptions

• If your catch handler does not completely handle an

exception,

• you may re-throw it to the outer catch blocks.

catch(E e)

{

// if the processing to handle e is incomplete,

throw;

}

#include <iostream>

using namespace std;

class ExceptionA: public std::exception { };

class ExceptionB: public ExceptionA { };

double division(int a, int b) {

if(b == 0) {

throw ExceptionB(); // "catch ExceptionB& catch

std::exception&"

}

return (a/b);

}

int main () {

int x=2, y=0;

double z;

try {

try{

z = division(x, y);

}

catch (ExceptionB& e) {

cout << "catch ExceptionB&" << endl;

throw;

}

cout << z << endl;

}

catch (std::exception& e) {

cout << "catch std::exception&" << endl;

}

return 0;

}

Stack Unwinding

• A function call stack is composed of stack frames.

void DrawSquare(Point topleft, Point

bottomright)

{

Point bottomleft = ...;

DrawLine(topleft, bottomleft);

...

}

void DrawLine(Point p1, Point p2)

{

...

Do something...

...

}

void main()

{

DrawSquare(Point(0,0), Point(100,100));

return 0;

}

function call stack:

If this is the next statement
to be executed, the call
stack will look like this: →

Stack Unwinding

• Popping one or more stack frames off the function call stack

is called stack unwinding.

• Exception handling involves stack unwinding if an

exception is not handled in the same function.

– When an exception occurs, the function call stack is linearly

searched for the exception handler, and all the stack frames before

the function with exception handler are removed from the function

call stack.

– All objects in the removed stack frames is destroyed by calling

destructors (for class objects)

Stack Unwinding

• return vs. throw

Stack Unwinding: Example

• Exceptions can be propagated through several levels of

function calls if there is no try-catch block

void ThrowsException() {

throw string("Exception!");

}

void DoSomething() {

cout << "DoSomething called.\n";

ThrowsException();

cout << “DoSomething finished\n”;

}

void DoSomethingMore() {

cout << "DoSomethingMore called.\n";

DoSomething();

cout << “error in DoSomethingMore\n";

throw string(“error");

cout << "DoSomethingMore finished.\n";

}

int main() {

try {

DoSomethingMore();

} catch (string s) {

cout << "Caught an exception “ << s << "'" <<

endl;

}

cout << "All done." << endl;

return 0;

}

Output:

DoSomethingMore called.

DoSomething called.

Caught an exception 'Exception!'

All done.

Stack Unwinding: Example

class CleaningUp{

private:

string word;

public:

CleaningUp (const string & str) {

word = str;

cout<< "Created word:" << word <<endl;

}

~CleaningUp() {

cout<< "Destroyed word:" << word <<endl;

}

};

void ThrowsException() {

CleaningUp hi("HI");

int* pi = new int;

throw "Exception";

delete pi; // memory leak

CleaningUp bye("BYE");

}

int main() {

try {

ThrowsException();

}

catch (const char* e) {

cout << "Caught an exception"<<

endl;

}

return 0;

}
Output:

Created word:HI

Destroyed word:HI

Caught an exception

Uncaught Exceptions

• If there is no matching catch handler in all of the nested

try block,

– Exception is uncaught

– If an exception is uncaught, the special function terminate() is

called

• Use "catch(…)", an ellipsis handler, to avoid uncaught

exceptions.

– It catches any exception not caught earlier.

$./test

terminate called after throwing an instance of 'std::exception'

what(): std::exception

Aborted (core dumped)

Uncaught Exceptions: Example

• If none of the catch handlers matches,

– Exception moves to the next enclosing try block

void ThrowsException() {

throw string("Exception!");

}

void CallsOne() {

ThrowsException();

}

void CallsTwo() {

try {

CallsOne();

} catch (const char* e) {

cout << "Caught in CallsTwo\n";

}

}

int main() {

try {

CallsTwo();

}

catch (string e) {

cout << "Caught an exception in

main\n";

}

return 0;

}

Output:

Caught an exception in main

Uncaught Exceptions: Example

• If an exception is uncaught,

– The special function terminate() is called

void ThrowsException() {

throw string("Exception!");

}

void CallsOne() {

ThrowsException();

}

void CallsTwo() {

try {

CallsOne();

} catch (const char* e) {

cout << "Caught in CallsTwo\n";

}

}

int main() {

try {

CallsTwo();

}

catch (const char* e) {

cout << "Caught an exception in

main\n";

}

return 0;

}

Output:

terminate called after throwing an instance

of 'std::string'

Uncaught Exceptions: Example

• An ellipsis handler catches all uncaught exceptions

void ThrowsException() {

throw string("Exception!");

}

void CallsOne() {

ThrowsException();

}

void CallsTwo() {

try {

CallsOne();

} catch (const char* e) {

cout << "Caught in CallsTwo\n";

}

}

int main() {

 try {

try {

CallsTwo();

 }

catch (const char* e) {

cout << "Caught an exception in main\n";

}

 catch(...) { cout << "An ellipsis handler catches all

uncaught exceptions" << endl; }

return 0;

}

Output:

An ellipsis handler catches all uncaught

exceptions

Course Wrap-up

Topics we covered...

• 1 - Course Intro

– 1 - Lab1 - Environment Setting,1 - Lab2 - G++, Make, GDB

• 2 - Review of C Pointer, Const and Structure

• 3 - Differences Between C and C++

• 4 - Dynamic Memory Allocation, References

• 5 - Compilation and Linkage, CMD Args

• 6 - Class

• 7 - Standard Template Library (STL)

• 8 - Inheritance, Const & Class

• 9 - Polymorphism 1

• 10 - Polymorphism 2

• 11 – Copy Constructor, Operator Overloading

• 12 - Template

• 13 - Exception Handling

Ending the class...

• We covered a large amount of complex C ++ content.

• I applaud your effort for all this hard work.

• Perhaps the programming language you will encounter will be
easier to learn. Now, you can be proud of yourself.

• I recommend you ...

– further study modern C++ on your own and

– work on larger projects with your own topics, that use 3rd-party libraries
in more diverse environments.

• I hope you will continue to enjoy programming.

Thanks for

being a great

class!

	슬라이드 1: Creative Software Design 13 – Exception Handling
	슬라이드 2: Final Exam
	슬라이드 3: Outline
	슬라이드 4: Exceptions
	슬라이드 5: How to Deal with Exceptions?
	슬라이드 6: How to Deal with Exceptions?
	슬라이드 7: How to Deal with Exceptions?
	슬라이드 8: C++ Exceptions: Basic
	슬라이드 9: C++ Exceptions: Basic
	슬라이드 10: C++ Exceptions: Basic
	슬라이드 11: C++ Exceptions: Basic
	슬라이드 12: try, catch, and throw
	슬라이드 13: try, catch, and throw
	슬라이드 14: try, catch, and throw
	슬라이드 15: Quiz 1
	슬라이드 16: Matching Catch Handlers
	슬라이드 17
	슬라이드 18: Matching Catch Handlers
	슬라이드 19: Matching Catch Handlers
	슬라이드 20
	슬라이드 21: Quiz 2
	슬라이드 22
	슬라이드 23: Nested Try Blocks
	슬라이드 24
	슬라이드 25: Re-throw Exceptions
	슬라이드 26
	슬라이드 27: Stack Unwinding
	슬라이드 28: Stack Unwinding
	슬라이드 29: Stack Unwinding
	슬라이드 30: Stack Unwinding: Example
	슬라이드 31: Stack Unwinding: Example
	슬라이드 32: Uncaught Exceptions
	슬라이드 33: Uncaught Exceptions: Example
	슬라이드 34: Uncaught Exceptions: Example
	슬라이드 35: Uncaught Exceptions: Example
	슬라이드 36: Course Wrap-up
	슬라이드 37: Topics we covered...
	슬라이드 38: Ending the class...
	슬라이드 39: Thanks for being a great class!

